1.单选题- (共4题)
2.
已知l、m、n是空间三条直线,则下列命题正确的是( )
A.若l // m,l // n,则m // n |
B.若l⊥m,l⊥n,则m // n |
C.若点A、B不在直线l上,且到l的距离相等,则直线AB // l |
D.若三条直线l、m、n两两相交,则直线l、m、n共面 |
2.选择题- (共2题)
3.填空题- (共10题)
10.
在xOy平面上,将双曲线的一支
及其渐近线
和直线
、
围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为
,过
作
的水平截面,计算截面面积,利用祖暅原理得出
体积为________ 











13.
某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a,中位数为b,众数为c,则a、b、c从小到大的关系依次是________
4.解答题- (共4题)
17.
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的
(细管长度忽略不计).

(1)如果该沙漏每秒钟漏下0.02cm³的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)
(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度. (精确到0.1cm)


(1)如果该沙漏每秒钟漏下0.02cm³的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)
(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度. (精确到0.1cm)
18.
在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
,
,
以AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.

(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成角的大小;
(3)求点N到平面ACM的距离.


以AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.

(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成角的大小;
(3)求点N到平面ACM的距离.
19.
小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p
,考试中,小威思量:从余下的四道题中再做一题并且及格的概率
;从余下的四道题中恰做两道并且及格的概率
,他发现
,只做一道更容易及格.
(1)设小威从余下的四道题中恰做三道并且及格的概率为
,从余下的四道题中全做并且及格的概率为
,求
及
;
(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?




(1)设小威从余下的四道题中恰做三道并且及格的概率为




(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?
试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(2道)
填空题:(10道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18