1.单选题- (共7题)
2.
一个画家有14个边长为1 m的正方体,他在地面上把它摆成如图所示的形式,然后,他把露出的表面都染上颜色,那么被染上颜色的面积为( )


A.21 m2 | B.24 m2 |
C.33 m2 | D.37 m2 |
3.
如图(1)所示,已知正方体面对角线长为a,沿阴影将它切割成两块,拼成如图(2)所示的几何体,那么此几何体的全面积为( )


A.(1+2 )a2 | B.(2+)a2 |
C.(3-2 )a2 | D.(4+)a2 |
5.
两个相同的正四棱锥组成如图所示的几何体,可放在棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()


A.1个 | B.2个 |
C.3个 | D.无穷多个 |
6.
已知三条不同的直线a,b,c,三个不同的平面α,β,γ,有下面四个命题:
①若α∩β=a,β∩γ=b且a∥b,则α∥γ;
②若直线a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;
④若a⊂α,b⊂α,c⊥a,c⊥b,则c⊥α.
其中正确的命题是( )
①若α∩β=a,β∩γ=b且a∥b,则α∥γ;
②若直线a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;
④若a⊂α,b⊂α,c⊥a,c⊥b,则c⊥α.
其中正确的命题是( )
A.①② | B.②③ |
C.①④ | D.③④ |
7.
如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB的中点,则下列推断不正确的是( )
A.BC⊥平面PAB |
B.AD⊥PC |
C.AD⊥平面PBC |
D.PB⊥平面ADC |
2.选择题- (共3题)
3.填空题- (共2题)
4.解答题- (共5题)
14.
已知底面为正方形的四棱锥P-ABCD,如图(1)所示,PC⊥面ABCD,其中图(2)为该四棱锥的正(主)视图和侧(左)视图,它们是腰长为4 cm的全等的等腰直角三角形.

(1)根据图(2)所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求PA.

(1)根据图(2)所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求PA.
15.
如图,AB是圆柱的母线,O′是上底面的圆心,△BCD是下底面圆的内接三角形,且BD是下底面圆的直径,E是CD的中点.

求证:(1)O′E∥平面ABC;
(2)平面O′CD⊥平面ABC.

求证:(1)O′E∥平面ABC;
(2)平面O′CD⊥平面ABC.
16.
如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.

(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.

(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.
试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(3道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:14