1.单选题- (共10题)
2.
如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b则图2中纸盒底部长方形的周长为( )


A.4ab | B.8ab | C.4a+b | D.8a+2b |
8.
如图,已知A ,D,B,E在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF 的是( )


A.BC = EF | B.AC//DF | C.∠C = ∠F | D.∠BAC = ∠EDF |
2.填空题- (共9题)
17.
如图,AB丄CD于点E,且AB = CD = AC,若点I是三角形ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC= 135°;②BD = BI,③S△AIC = S△BID ;④IF⊥A

A.其中正确的是_________(填序号). |

18.
如图,四边形ABCD中,∠A = ∠B = 90°,AB边上有一点E,CE,DE分别是∠BCD和∠ADC 的角平分线,如果ABCD的面积是12,CD = 8,那么AB的长度为_____.

3.解答题- (共9题)
20.
以下关于x的各个多项式中,a,b,c,m,n均为常数.
(1)根据计算结果填写下表:
(2)已知(x+ 3)2(x + mx +n)既不含二次项,也不含一次项,求m + n的值.
(3) 多项式M与多项式x2-3x + 1的乘积为2x4+ ax3 + bx2+ cx -3,则2 a +b + c的值为
(1)根据计算结果填写下表:
| 二次项系数 | 一次项系数 | 常数项 |
(2x + l)(x + 2) | 2 | | 2 |
(2x + 1)(3x - 2) | 6 | | -2 |
(ax + b)( mx + n) | am | | bn |
(2)已知(x+ 3)2(x + mx +n)既不含二次项,也不含一次项,求m + n的值.
(3) 多项式M与多项式x2-3x + 1的乘积为2x4+ ax3 + bx2+ cx -3,则2 a +b + c的值为
26.
如图,已知A(0,a),B(b,0),C(c,0)是平面直角坐标系中三点,且a,b满足
.c<3

(1)求A,B两点的坐标;
(2)若△ABC的面积为6.
①在图中画出△ABC;
②若△ABP与△ABC全等,直接写出所有符合条件的P点的坐标;
(3)已知∠MAB = ∠ABC,BM = AC,若满足条件的M点有且只有两个,直接写出此时c的取
值范围.


(1)求A,B两点的坐标;
(2)若△ABC的面积为6.
①在图中画出△ABC;
②若△ABP与△ABC全等,直接写出所有符合条件的P点的坐标;
(3)已知∠MAB = ∠ABC,BM = AC,若满足条件的M点有且只有两个,直接写出此时c的取
值范围.
27.
已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,B

A. (1)如图1,若OB=1,OC = ![]() ![]() (2)如图 2,当 t =1,∠ACO +∠ACB = 180°时,求 BC + OC -OB 的值; |

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(9道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:28