刷题首页
题库
高中数学
题干
已知斜率为1的直线交抛物线
:
(
)于
,
两点,且弦
中点的纵坐标为2.
(1)求抛物线
的标准方程;
(2)记点
,过点
作两条直线
,
分别交抛物线
于
,
(
,
不同于点
)两点,且
的平分线与
轴垂直,求证:直线
的斜率为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-21 06:38:50
答案(点此获取答案解析)
同类题1
已知抛物线
:
上的点
到其焦点
的距离为
.
(Ⅰ)求
的方程;
(Ⅱ) 已知直线
不过点
且与
相交于
,
两点,且直线
与直线
的斜率之积为1,证明:
过定点.
同类题2
(江苏省南京市2018届高三第三次模拟考试数学试题)在平面直角坐标系
中,抛物线
的焦点为
,点
是抛物线
上一点,且
.
(1)求
的值;
(2)若
为抛物线
上异于
的两点,且
.记点
到直线
的距离分别为
,求
的值.
同类题3
设抛物线
的焦点为
,
为直线
上的动点,过
作
的两条切线,切点分别为
.
(1)若
的坐标为
,求
;
(2)证明:
.
同类题4
已知复数
、
满足方程
和
,记
与
在平面上所对应的点所形成的轨迹为
和
.
(1)求曲线
和
的方程;
(2)过点
的直线交
于
、
不同两点,交
轴于点
,已知
,
,求
的值;
(3)直线
交
于
、
不同两点,
、
在
轴的射影分别为
、
,若点
满足
,证明:点
在
上.
同类题5
过抛物线
C
:
上一点
作两条直线分别与抛物线相交于
M
,
N
两点,连接
MN
,若直线
MN
,
PM
,
PN
与坐标轴都不垂直,且它们的斜率满足
,
,则直线
为坐标原点
的斜率为
A.3
B.2
C.1
D.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的定值问题