刷题首页
题库
高中数学
题干
在平面直角坐标系中,直线
的方程为
,过点
且与直线
相切的动圆圆心为点
,记点
的轨迹为曲线
.
(1)求
的方程;
(2)若直线
与
相交于
两点,与
轴的交点为
.若
,求
.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 06:39:10
答案(点此获取答案解析)
同类题1
(江苏省徐州市2018届高三第一次质量检测数学试题)在平面直角坐标系
中,已知平行于
轴的动直线
交抛物线
:
于点
,点
为
的焦点.圆心不在
轴上的圆
与直线
,
,
轴都相切,设
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若直线
与曲线
相切于点
,过
且垂直于
的直线为
,直线
,
分别与
轴相交于点
,
.当线段
的长度最小时,求
的值.
同类题2
已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.
同类题3
设抛物线
的方程为
,其中常数
,
是抛物线
的焦点.
(1)若直线
被抛物线
所截得的弦长为6,求
的值;
(2)设
是点
关于顶点
的对称点,
是抛物线
上的动点,求
的最大值;
(3)设
,
、
是两条互相垂直,且均经过点
的直线,
与抛物线
交于点
、
,
与抛物线
交于点
、
,若点
满足
,求点
的轨迹方程.
同类题4
已知抛物线
的焦点在直线
上滑动,对称轴作平行移动,当抛物线的焦点移到点
时,抛物线方程为________________.
同类题5
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足
.
(1) 求曲线C的方程;
(2)动点Q(x
0
,y
0
)(-2<x
0
<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程
求直线与抛物线相交所得弦的弦长