刷题首页
题库
高中数学
题干
在直三棱柱
中,
,
,
,点
在线段
上,且
,
,
,
分别为
,
,
的中点.求证:
(1)
平面
;
(2)平面
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 12:39:25
答案(点此获取答案解析)
同类题1
已知CD是等边三角形ABC的AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-
A.
(1)求直线BC与平面DEF所成角的余弦值;
(2)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
同类题2
如图,在四棱锥
中,
底面
,且底面
为正方形,
分别为
的中点.
(1)求证:
平面
;
(2)求平面
和平面
的夹角
同类题3
设
是直线
的方向向量,
是平面
的法向量,则( )
A.
B.
C.
D.
或
同类题4
如图所示,三棱锥
中,
平面
,
,
,
为
上一点,
,
,
分别为
,
的中点.
(1)证明:
;
(2)求平面
与平面
所成角的余弦值.
同类题5
如图所示的多面体中,
EA
⊥平面
ABC
,
DB
⊥平面
ABC
,
AC
⊥
BC
,
CM
⊥
AB
,垂足为
M
,且
AE
=
AC
=2
,
BD
=2
BC
=4,
(1)求证:
CM
⊥
ME
;
(2)求二面角
A
﹣
MC
﹣
E
的余弦值.
(3)在线段
DC
上是否存在一点
N
,使得直线
BN
∥平面
EMC
,若存在,求出
的值;若不存在,请说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明