刷题首页
题库
高中数学
题干
若直线
的方向向量为
,平面
的法向量为
,则( )
A.
B.
C.
D.
与
斜交
上一题
下一题
0.99难度 单选题 更新时间:2020-02-21 12:11:08
答案(点此获取答案解析)
同类题1
已知三棱柱
中,
平面
,
于点
,点
在棱
上,满足
.
若
,求证:
平面
;
设平面
与平面
所成的锐二面角的大小为
,若
,试判断命题“
”的真假,并说明理由.
同类题2
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,O为AD中点,AB=1,AD=2,AC=CD=
.
(1)证明:直线AB∥平面PCO;
(2)求二面角P-CD-A的余弦值;
(3)在棱PB上是否存在点N,使AN⊥平面PCD,若存在,求线段BN的长度;若不存在,说明理由.
同类题3
如图,已知圆柱
,底面半径为1,高为2,
是圆柱的一个轴截面,动点
从点
出发沿着圆柱的侧面到达点
,其路径最短时在侧面留下的曲线记为
:将轴截面
绕着轴
,逆时针旋转
角到
位置,边
与曲线
相交于点
.
(1)当
时,求证:直线
平面
;
(2)当
时,求二面角
的余弦值.
同类题4
在四棱锥
P
-
ABCD
中,底面
ABCD
是边长为
的正方形,平面
PAC
⊥底面
ABCD
,
PA
=
PC
=
(1)求证:
PB
=
PD
;
(2)若点
M
,
N
分别是棱
PA
,
PC
的中点,平面
DMN
与棱
PB
的交点
Q
,则在线段
BC
上是否存在一点
H
,使得
DQ
⊥
PH
,若存在,求
BH
的长,若不存在,请说明理由.
同类题5
如图,四棱锥
的底面
为一直角梯形,其中
,
,
,
底面
,
是
的中点.
(1)试用
、
、
表示
,并判断直线
与平面
的位置关系;
(2)若
平面
,求异面直线
与
所成角的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明