刷题首页
题库
高中数学
题干
某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第
个图形包含
个小正方形.
(1)求出
的值;
(2)利用合情推理的“归纳推理思想”,归纳出
与
之间的关系式,并根据你得到的关系式求出
的表达式.
上一题
下一题
0.99难度 解答题 更新时间:2016-08-10 05:17:12
答案(点此获取答案解析)
同类题1
谢尔宾斯基三角形(Sierpinski triangle)是一种分形几何图形,由波兰数学家谢尔宾斯基在1915年提出,它是一个自相似的例子,其构造方法是:
(1)取一个实心的等边三角形(图1);
(2)沿三边中点的连线,将它分成四个小三角形;
(3)挖去中间的那一个小三角形(图2);
(4)对其余三个小三角形重复(1)(2)(3)(4)(图3).
制作出来的图形如图4,….
若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )
A.
B.
C.
D.
同类题2
分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )
A.
B.
C.
D.
同类题3
将边长分别为1、2、3、…、n、n+1、…(
)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、……、第n个阴影部分图形.设前n个阴影部分图形的面积的平均值为
.记数列
满足
,
(1)求
的表达式;
(2)写出
的值,并求数列
的通项公式;
(3)记
,若不等式
有解,求
的取值范围.
同类题4
如图是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1代“勾股树”,重复图一的作法,得到图二为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则
n
代“勾股树”所有正方形的面积的和为( )
A.
B.
C.
D.
同类题5
图①、图②、图③、图④分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第
n
个图形包含的单位正方形的个数是( )
① ② ③ ④
A.
n
2
-2
n
+1
B.2
n
2
-2
n
+1
C.2
n
2
+2
D.2
n
2
-
n
+1
相关知识点
推理与证明
合情推理与演绎推理
归纳推理
图与形中的归纳推理