刷题首页
题库
高中数学
题干
下面给出了四个类比推理:
①
为实数,若
则
;类比推出:
为复数,若
则
.
② 若数列
是等差数列,
,则数列
也是等差数列;类比推出:若数列
是各项都为正数的等比数列,
,则数列
也是等比数列.
③ 若
则
; 类比推出:若
为三个向量,则
.
④ 若圆的半径为
,则圆的面积为
;类比推出:若椭圆的长半轴长为
,短半轴长为
,则椭圆的面积为
.上述四个推理中,结论正确的是( )
A.① ②
B.② ③
C.① ④
D.② ④
上一题
下一题
0.99难度 单选题 更新时间:2017-11-03 10:33:50
答案(点此获取答案解析)
同类题1
我们知道,圆的面积的导数为圆的周长,即:若圆的半径为r,则圆的面积
,
为圆的周长.通过类比,有以下结论:
①正方形面积的导数为正方形的周长;
②正方体体积的导数为正方体的表面积;
③球体的体积的导数为球体的表面积.
其中正确的是________(填序号).
同类题2
给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)
①“若
,则
”
类比推出“若
, 则
”;
②“若
,则
”
类比推出“若
,则
”;
③“若
,则复数
”
类比推出“若
,则
”;
④“若
,则
”
类比推出“若
是非零向量,则
”.
其中类比结论正确的个数是
A.
B.
C.
D.
同类题3
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式
中“…”即代表无限次重复,但原式却是个定值,它可以通过方程
求得
,类似上述过程,则
( )
A.1
B.2
C.3
D.4
同类题4
“
”是个很神奇的数,对其进行如下计算:
,
,
,
,
,如此反复运算,则第
次运算的结果是( )
A.
B.
C.
D.
同类题5
将正整数12分解成两个正整数的乘积有
,
,
三种,其中
是这三种分解中,两数差的绝对值最小的,我们称
为12的最佳分解.当
是正整数
的最佳分解时,我们规定函数
,例如
.关于函数
有下列叙述:①
,②
,③
,④
.其中正确的序号为
(填入所有正确的序号).
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理
等差、等比数列中的类比推理
运算法则的类比