刷题首页
题库
高中数学
题干
“求方程
的解”有如下解题思路:设
,则
在
上单调递减,且
,所以原方程有唯一解
.类比上述解题思路,不等式
的解集是__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-01-10 12:22:33
答案(点此获取答案解析)
同类题1
教材中指出:当
很小,
不太大时,可以用
表示
的近似值,即
(1),我们把近似值与实际值之差除以实际值的商的绝对值称为“相对近似误差”,一般用字母
表示,即相对近似误差
(1)利用(1)求出
的近似值,并指出其相对近似误差(相对近似误差保留两位有效数字)
(2)若利用(1)式计算
的近似值产生的相对近似误差不超过
,求正实数
的取值范围;
(3)若利用(1)式计算
的近似值产生的相对近似误差不超过
,求正整数
的最大值。(参考对数数值:
)
同类题2
我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在
中“…”即代表无限次重复,但原式却是个定值
x
,这可以通过方程
确定出来
x
=2,类似地不难得到
=( )
A.
B.
C.
D.
同类题3
南宋数学家杨辉研究了垛积与各类多面体体积的联系,由多面体体积公式导出相应的垛积术公式.例如方亭(正四梭台)体积为
,其中
为上底边长,
为下底边长,
为高.杨辉利用沈括隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由
个球组成,以下各层的长、宽依次各增加一个球,共有
层,最下层(即下底)由
个球组成,杨辉给出求方垛中物体总数的公式如下:
根据以上材料,我们可得
__________.
同类题4
德国大数学家高斯年少成名,被誉为数学王子.19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》, 在其年幼时,对1+2+3+…+100的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也被称为高斯算法.现有函数
f
(
x
)=
,则
f
(1)+
f
(2)+…+
f
(
m
+2017)等于( )
A.
B.
C.
D.
同类题5
已知
,由
有无穷多个根:0,
,
,
,…,可得:
,把这个式子的右边展开,发现
的系数为
,即
,请由
出发,类比上述思路与方法,可写出类似的一个结论_____.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比