刷题首页
题库
高中数学
题干
我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在
中“…”即代表无限次重复,但原式却是个定值
x
,这可以通过方程
确定出来
x
=2,类似地不难得到
=( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-26 01:24:13
答案(点此获取答案解析)
同类题1
《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长
L
与高
h
计算其体积
V
的近似公式
.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式
相当于将圆锥体积公式中的圆周率π近似取为____.
同类题2
对于问题:“已知曲线
与曲线
有且只有两个公共点,求经过这两个公共点的直线方程”.某人的正解如下:曲线
的方程与曲线
的方程相加得
,这就是所求的直线方程.理由是:①两个方程相加后得到的表示直线;②两个公共点的坐标都分别满足曲线
的方程与曲线
的方程,则它们就满足两个方程相加后得到的方程;③两点确定一条直线.用类似的方法解下列问题:若曲线
与曲线
有且只有3个公共点,且它们不共线,则经过3个公共点的圆方程为_______.
同类题3
二项展开式
,两边对
求导,得
,令
,可得
,类比上述方法,则
______.
同类题4
魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数
中的“…”代表无限次重复,设
,则可以利用方程
求得x,类似地可得到正数
A.2
B.3
C.4
D.6
同类题5
阅读下面材料:
根据两角和与差的正弦公式,有
------①
------②
由①+②得
------③
令
有
代入③得
.
类比上述推证方法,根据两角和与差的余弦公式,证明:
;
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比