刷题首页
题库
高中数学
题干
现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是
a
的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为
.类比到空间,有两个棱长均为
a
的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为
.
上一题
下一题
0.99难度 填空题 更新时间:2020-03-08 10:42:11
答案(点此获取答案解析)
同类题1
我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为
,高皆为
的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面
上,用平行于平面
且与平面
任意距离
处的平面截这两个几何体,可横截得到
及
两截面.可以证明
总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.
同类题2
三角形的三个顶点的坐标分别为
,
,
,则该三角形的重心(三边中线交点)的坐标为
.类比这个结论,连接四面体的一个顶点及其对面三角形重心的线段称为四面体的中线,四面体的四条中线交于一点,该点称为四面体的重心.若四面体的四个顶点的空间坐标分别为
,
,
,
,则该四面体的重心的坐标为( )
A.
B.
C.
D.
同类题3
已知
为三条不同的直线,给出如下两个命题:①若
,则
;②若
,则
.试类比以上某个命题,写出一个正确的命题:设
为三个不同的平面,__________.
同类题4
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点
,且法向量为
的直线(点法式)方程为:
,化简得
.类比以上方法,在空间直角坐标系中,经过点
,且法向量为
的平面的方程为( )
A.
B.
C.
D.
同类题5
从三角形内部任意一点向各边引垂线,其长度分别为
,且相应各边上的高分别为
,求证:
=1.类比以上性质,给出空间四面体的一个猜想,并给出证明.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比