刷题首页
题库
高中数学
题干
已知结论:“在正三角形
中,若
是边
的中点,
是三角形
的重心,则
.”若把该结论推广到空间,则有结论:在棱长都相等的四面体
中,若
的中心为
,四面体内部一点
到四面体各面的距离都相等,则
( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-05-30 05:09:55
答案(点此获取答案解析)
同类题1
我们知道:在平面内,点
到直线
的距离公式
,通过类比的方法,可求得:在空间中,点
到直线
的距离为( )
A.3
B.5
C.6
D.
同类题2
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点
,且法向量为
的直线(点法式)方程为
,化简得
.类比以上方法,在空间直角坐标系中,经过点
,且法向量为
的平面(点法式)方程为
.
同类题3
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S
1
,S
2
,S
3
,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
同类题4
中,
,
D
为垂足,
BD
为
AB
在
BC
上的射影,
CD
为
AC
在
BC
上的射影,则有
成立.直角四面体
P
—
ABC
(即
)中,
O
为
P
在
内的射影,
的面积分别为
的面积记为
S
。类比直角三角形中的射影结论,在直角四面体
P
—
ABC
中可得到正确结论_____。(写出一个正确结论即可)
同类题5
在平面几何里有射影定理:设三角形
的两边
,
是
点在
上的射影,则
.拓展到空间,在四面体
中,
面
,点
是
在面
内的射影,且
在
内,类比平面三角形射影定理,得出正确的结论是()
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比