刷题首页
题库
高中数学
题干
在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在
中“…”即代表无限次重复,但原式却是个定值
,这可以通过方程
确定出来
,类似地,可得
的值为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-09-23 09:31:02
答案(点此获取答案解析)
同类题1
中国古代近似计算方法源远流长,早在八世纪,我国著名数学家张遂在编制《大衍历》中发明了一种二次不等距插值算法:若函数
在
处的函数值分别为
,则在区间
上
可以用二次函数来近似代替:
,其中
.若令
,
,请依据上述算法,估算
的值是( )
A.
B.
C.
D.
同类题2
①已知
是三角形一边的边长,
是该边上的高,则三角形的面积是
,如果把扇形的弧长
,半径
分别看出三角形的底边长和高,可得到扇形的面积
;②由
,可得到
,则①、②两个推理依次是
A.类比推理、归纳推理
B.类比推理、演绎推理
C.归纳推理、类比推理
D.归纳推理、演绎推理
同类题3
先阅读下列不等式的证法,再解决后面的问题:
已知
,
,求证:
.
证明:构造函数
,
即
.
因为对一切
,恒有
,
所以
,从而得
.
(1)若
,
,请写出上述结论的推广式;
(2)参考上述证法,对你推广的结论加以证明.
同类题4
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式
中“…”即代表无限次重复,但原式却是个定值,它可以通过方程
求得
,类似上述过程,则
( )
A.
B.3
C.6
D.
同类题5
已知从装有
个球(其中
个白球,1个黑球)的口袋中取出
个球,
,
,共有
种取法,在这
种取法中,可以分成两类:一类是取出的
个球全部为白球,另一类是取出1个黑球和
个白球,共有
种取法,即有等式
成立,试根据上述思想,化简下列式子:
________
,
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比