刷题首页
题库
高中数学
题干
某个命题与自然数
n
有关,如果当
(
)时该命题成立,则可得
时该命题也成立,若已知
时命题不成立,则下列说法正确的是______(填序号)
(1)
时,该命题不成立;
(2)
时,该命题不成立;
(3)
时,该命题可能成立;
(4)
时,该命题可能成立也可能不成立,但若
时命题成立,则对任意
,该命题都成立.
上一题
下一题
0.99难度 填空题 更新时间:2020-02-15 12:38:53
答案(点此获取答案解析)
同类题1
在数学归纳法证明等式“
”时,某学生证明如下:(ⅰ)当
时,左边
,右边
,
原等式成立;(ⅱ)假设
时等式成立,即
,那么当
时,
,即当
时,等式也成立.根据(ⅰ)、(ⅱ)可以判断,等式对任意
都成立.评价该学生的证明情况:______(选填“正确”或“错误”).
同类题2
用数学归纳法证明“当n为正奇数时,x
n
+y
n
能被x+y整除”,第二步假设应写成
A.假设n=k(k∈N
*
)时,x
n
+y
n
能被x+y整除
B.假设n=2k(k∈N
*
)时,x
n
+y
n
能被x+y整除
C.假设n=2k+1(k∈N
*
)时,x
n
+y
n
能被x+y整除
D.假设n=2k-1(k∈N
*
)时,x
n
+y
n
能被x+y整除
同类题3
证明命题“凸
边形内角和等于
”时,
可取的第一个值是( )
A.1
B.2
C.3
D.4
同类题4
设数列
,其中
是不等于零的常数,求证:
不在数列
中.
同类题5
证明:
对任意
都成立.
相关知识点
推理与证明
数学归纳法
数学归纳法