刷题首页
题库
高中数学
题干
在平面直角坐标系xOy中,一动圆经过点
且与直线
相切,设该动圆圆心的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P是曲线E上的动点,点B、C在y轴上,△PBC的内切圆的方程为
,求△PBC面积的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2016-07-15 12:34:12
答案(点此获取答案解析)
同类题1
已知平面内的定点
到定直线
的距离等于
,动圆
过点
且与直线
相切,记圆心
的轨迹为曲线
.在曲线
上任取一点
,过
作
的垂线,垂足为
.
(1)求曲线
的轨迹方程;
(2)记点
到直线
的距离为
,且
,求
的取值范围;
(3)判断
的平分线所在的直线与曲线的交点个数,并说明理由.
同类题2
已知圆
C
:
x
2
+
y
2
+2
x
﹣2
y
+1=0和抛物线
E
:
y
2
=2
px
(
p
>0),圆
C
与抛物线
E
的准线交于
M
、
N
两点,△
MNF
的面积为
p
,其中
F
是
E
的焦点.
(1)求抛物线
E
的方程;
(2)不过原点
O
的动直线
l
交该抛物线于
A
,
B
两点,且满足
OA
⊥
OB
,设点
Q
为圆
C
上任意一动点,求当动点
Q
到直线
l
的距离最大时直线
l
的方程.
同类题3
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足
∥
,
·
=
·
,M点的轨迹为曲线
A.
(1)求C的方程;
(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.
同类题4
已知抛物线
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程
抛物线中的三角形面积问题