刷题首页
题库
高中数学
题干
如图所示己知抛物线
的焦点为
,准线为
,过点
的直线交抛物线
于
,
两点.且
.
(1)求抛物线方程;
(2)若点
在准线
上的投影为
,
是
上一点,且
,求
面积的最小值及此时直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 04:46:27
答案(点此获取答案解析)
同类题1
已知抛物线
:
的焦点为
,
为抛物线
上一点,且
.
(1)求抛物线
的方程;
(2)过点
的直线与抛物线
交于
,
两点,求线段
的垂直平分线的横截距的取值范围.
同类题2
已知抛物线
的焦点为F,P为抛物线上一点,O为坐标原点,△OFP的外接圆与抛物线的准线相切,且外接圆的周长为
.
(1)求抛物线C的方程;
(2)设直线l交C于A,B两点,M是AB的中点,若
,求点M到y轴的距离的最小值,并求此时l的方程.
同类题3
已知抛物线
,过抛物线
的焦点的直线
与抛物线
相交于
,
两点,线段
的长度为8,且
的中点到
轴的距离为3.
(1)求抛物线
的方程;
(2)已知抛物线
与直线
交于
,
两点,判断坐标原点
是否在以
为直径的圆上,并说明理由.
同类题4
已知抛物线
:
上横坐标为4的点到焦点的距离为5.
(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.
同类题5
在平面直角坐标系
中,动圆
经过点
并且与直线
相切,设动圆
圆心的轨迹为曲线
.
(1)如果直线
过点(0,4),且和曲线
只有一个公共点,求直线
的方程;
(2)已知不经过原点的直线
与曲线
相交于
、
两点,判断命题“如果
,那么直线
经过点
”是真命题还是假命题,并说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中的三角形面积问题