刷题首页
题库
高中数学
题干
有如下3个命题;
①双曲线
上任意一点
到两条渐近线的距离乘积是定值;
②双曲线
的离心率分别是
,则
是定值;
③过抛物线
的顶点任作两条互相垂直的直线与抛物线的交点分别是
,则直线
过定点;其中正确的命题有( )
A.3个
B.2个
C.1个
D.0个
上一题
下一题
0.99难度 单选题 更新时间:2018-12-23 10:39:20
答案(点此获取答案解析)
同类题1
已知抛物线
:
的焦点为
,准线为
,若点
在
上,点
在
上,且
是边长为
的正三角形.
(1)求
的方程;
(2)过点
的直线
与
交于
两点,若
,求
的面积.
同类题2
过点
、斜率为
的直线与抛物线
交于两点
、
,如果
(
为原点)求
的值及抛物线的焦点坐标.
同类题3
若方程
的三个实根可分别作为一椭圆、一双曲线、一抛物线的离心率,则
的取值范围是
A.
B.
C.
D.
同类题4
已知抛物线
的焦点为
,抛物线
上存在一点
到焦点
的距离等于
.
(1)求抛物线
的方程;
(2)已知点
在抛物线
上且异于原点,点
为直线
上的点,且
.求直线
与抛物线
的交点个数,并说明理由.
同类题5
已知
内接于抛物线
,其中
O
为原点,若此内接三角形的垂心恰为抛物线的焦点,则
的外接圆方程为_____.
相关知识点
平面解析几何
圆锥曲线
双曲线中的定值问题
抛物线中的直线过定点问题