刷题首页
题库
高中数学
题干
已知圆
与抛物线
交于
两点,与抛物线的准线交于
两点,若四边形
是矩形,则
等于 ( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-03-28 03:40:58
答案(点此获取答案解析)
同类题1
如图抛物线
的焦点为
,
为抛物线上一点(
在
轴上方),
,
点到
轴的距离为4.
(1)求抛物线方程及点
的坐标;
(2)是否存在
轴上的一个点
,过点
有两条直线
,满足
,
交抛物线
于
两点.
与抛物线相切于点
(
不为坐标原点),有
成立,若存在,求出点
的坐标.若不存在,请说明理由.
同类题2
在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹
的方程;
(2)若直线
与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值
同类题3
已知抛物线
(
),其准线方程为
,直线
过点
(
)且与抛物线交于
两点,
为坐标原点.
(1)求抛物线方程,并证明:
的值与直线
倾斜角的大小无关;
(2)若
为抛物线上的动点,记
的最小值为函数
,求
的解析式.
同类题4
平面直角坐标系中,已知直线
,定点
,动点
到直线
的距离是到定点
的距离的2倍.
(1)求动点
的轨迹
的方程;
(2)若
为轨迹
上的点,以
为圆心,
长为半径作圆
,若过点
可作圆
的两条切线
(
,
为切点),求四边形
面积的最大值.
同类题5
已知椭圆
过点
,且离心率为
.直线
与
轴正半轴和
轴分别交于点
、
,与椭圆分别交于点
、
,各点均不重合且满足
,
.
(1)求椭圆的标准方程;
(2)若
,试证明:直线
过定点并求此定点.
相关知识点
平面解析几何
圆锥曲线
根据抛物线方程求焦点或准线