刷题首页
题库
高中数学
题干
已知椭圆
和抛物线
,在
上各取两个点,这四个点的坐标为
.
(Ⅰ)求
的方程;
(Ⅱ)设
是
在第一象限上的点,
在点
处的切线
与
交于
两点,线段
的中点为
,过原点
的直线
与过点
且垂直于
轴的直线交于点
,证明:点
在定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-06 03:51:02
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知椭圆
的左焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)已知圆
,连接
并延长交圆
于点
为椭圆长轴上一点(异于左、右焦点),过点
作椭圆长轴的垂线分别交椭圆
和圆
于点
(
均在
轴上方).连接
,记
的斜率为
,
的斜率为
.
①求
的值;
②求证:直线
的交点在定直线上.
同类题2
已知
为椭圆
上三个不同的点,
为坐标原点.
(1)若
,问:是否存在恒与直线
相切的圆?若存在,求出该圆的方程;若不存在,请说明理由;
(2)若
,求
的面积.
同类题3
已知椭圆
(a>b>0)的左右焦点分别为F
1
,F
2
,左右顶点分别为A,B,过右焦点F
2
且垂直于长轴的直线交椭圆于G,H两点,|GH|=3,△F
1
GH的周长为8.过A点作直线l交椭圆于第一象限的M点,直线MF
2
交椭圆于另一点N,直线NB与直线l交于点P.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若△AMN的面积为
,求直线MN的方程;
(Ⅲ)证明:点P在定直线上.
同类题4
已知椭圆
的离心率
,顶点
到直线
的距离为
,椭圆
内接四边形
(点
在椭圆上)的对角线
相交于点
,且
.
(1)求椭圆
的标准方程;
(2)求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定直线