刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,左右端点为
,其中
的横坐标为2. 过点
的直线交椭圆于
两点,
在
的左侧,点
关于
轴的对称点为
,射线
与
交于点
.
(1)求椭圆的方程;
(2)求证:
点在直线
上.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-06 04:38:13
答案(点此获取答案解析)
同类题1
如图,
C、D
是离心率为
的椭圆的左、右顶点,
、
是该椭圆的左、右焦点,
A、B
是直线
4上两个动点,连接
AD
和
BD
,它们分别与椭圆交于点
E、F
两点,且线段
EF
恰好过椭圆的左焦点
. 当
时,点E恰为线段
AD
的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.
同类题2
如图,设椭圆
的左、右焦点分别为F
1
,F
2
,上顶点为A,过点A与AF
2
垂直的直线交x轴负半轴于点Q,且
0,若过 A,Q,F
2
三点的圆恰好与直线
相切,过定点 M(0,2)的直线
与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线
的斜率
,在x轴上是否存在点P(
,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出
的取值范围;如果不存在,请说明理由;(Ⅲ)若实数
满足
,求
的取值范围.
同类题3
已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.
同类题4
已知椭圆
的离心率
,顶点
到直线
的距离为
,椭圆
内接四边形
(点
在椭圆上)的对角线
相交于点
,且
.
(1)求椭圆
的标准方程;
(2)求直线
的方程.
同类题5
已知椭圆
:
的离心率为
,过左焦点
的直线与椭圆交于
,
两点,且线段
的中点为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为
上一个动点,过点
与椭圆
只有一个公共点的直线为
,过点
与
垂直的直线为
,求证:
与
的交点在定直线上,并求出该定直线的方程.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定直线