刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
,
为顶点的三角形的周长为
.
(1)求椭圆
的标准方程;
(2)设该椭圆
与
轴的交点为
,
(点
位于点
的上方),直线
与椭圆
相交于不同的两点
,求证:直线
与直线
的交点
在定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-09 12:29:28
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
,
,直线
与椭圆
在第一象限内的交点是
,且
轴,
.
(1)求椭圆
的方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
,
两点,与椭圆
相交于
,
两点,且
?若存在,求出直线
的方程;若不存在,说明理由.
同类题2
已知椭圆
和抛物线
,在
,
上各取两个点,这四个点的坐标为
,
,
,
(Ⅰ)求
,
的方程;
(Ⅱ)设
是
在第一象限上的点,
在点
处的切线
与
交于
两点,线段
的中点为
,过原点
的直线
与过点
且垂直于
轴的直线交于点
,证明:点
在定直线上.
同类题3
椭圆
E
:
(
)的离心率为
,右焦点为
F
,上顶点为
B
,且
.
(1)求椭圆
E
的方程:
(2)是否存在直线
l
,使得
l
交椭圆
E
于
M
,
N
两点,且
F
恰是
的垂心?若存在,求出直线
l
的方程:若不存在,说明理由,
同类题4
已知椭圆
:
的离心率为
,右顶点
是抛物线
的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点
的直线
与椭圆交于
,
两个不同的点,且使
成立(
为直线
外的一点)?若存在,求出
的方程;若不存在,说明理由.
同类题5
设椭圆
的离心率为
,直线
过椭圆的右焦点
,与椭圆交于点
;若
垂直于
轴,则
.
(1)求椭圆的方程;
(2)椭圆的左右顶点分别为
,直线
与直线
交于点
.求证:点
在定直线上.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定直线