刷题首页
题库
高中数学
题干
在平面直角坐标系
中,设椭圆
的左焦点为
,左准线为
为椭圆
上任意一点,直线
,垂足为
,直线
与
交于点
.
(1)若
,且
,直线
的方程为
.①求椭圆
的方程;②是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.
(2)设直线
与圆
交于
两点,求证:直线
均与圆
相切.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-07 11:09:31
答案(点此获取答案解析)
同类题1
设椭圆
的左焦点为
F
,左顶点为
A
,已知
,其中
O
为坐标原点,
e
为椭圆的离心率.
求椭圆
C
的方程;
是否存在斜率为
的直线
l
,使得当直线
l
与椭圆
C
有两个不同交点
M
,
N
时,能在直线
上找到一点
P
,在椭圆
C
上找到一点
Q
,满足
?若存在,求出直线
l
的方程;若不存在,说明理由.
同类题2
椭圆
的左顶点为
,
是椭圆上
上异于点
的任意一点,点
与点
关于点
对称.
(Ⅰ)求点
的坐标和椭圆
的离心率.
(Ⅱ)若椭圆
上是否存在点
,使得
,若存在,求出
横坐标的取值;若不存在,说明理由.
同类题3
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点A,
A.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
的取值范围;
(Ⅲ)若直线
不过点M,试问
是否为定值?并说明理由.
同类题4
已知椭圆
的一个焦点在直线
上,且离心率
.
(1)求该椭圆的方程;
(2)若
与
是该椭圆上不同的两点,且线段
的中点
在直线
上,试证:
轴上存在定点
,对于所有满足条件的
与
,恒有
;
同类题5
已如椭圆
E
:
(
)的离心率为
,点
在
E
上.
(1)求
E
的方程:
(2)斜率不为0的直线
l
经过点
,且与
E
交于
P
,
Q
两点,试问:是否存在定点
C
,使得
?若存在,求
C
的坐标:若不存在,请说明理由
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中存在定点满足某条件问题