刷题首页
题库
高中数学
题干
已知椭圆
右焦点
,离心率为
,过
作两条互相垂直的弦
,设
中点分别为
.
(1)求椭圆的标准方程;
(2)证明:直线
必过定点,并求出此定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-30 06:01:57
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长半轴长为半径的圆与直线
相切.(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知点
为动直线
与椭圆
的两个交点,问:在
轴上是否存在定点
,使得
为定值?若存在,试求出点
的坐标和定值;若不存在,请说明理由.
同类题2
已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
的焦点与双曲线
的焦点重合,并且经过点
.
(Ⅰ)求椭圆C的标准方程;
(II) 设椭圆C短轴的上顶点为P,直线
不经过P点且与
相交于
、
两点,若直线PA与直线PB的斜率的和为
,判断直线
是否过定点,若是,求出这个定点,否则说明理由.
同类题4
已知圆
M
:
x
2
+(
y
﹣1)
2
=1,圆
N
:
x
2
+(
y
+1)
2
=1,直线
l
1
、
l
2
分别过圆心
M
、
N
,且
l
1
与圆
M
相交于
A
、
B
,
l
2
与圆
N
相交于
C
、
D
,
P
是椭圆
上的任意一动点,则
的最小值为( )
A.
B.
C.3
D.6
同类题5
如图,已知
,
是椭圆
的左右焦点,
为椭圆
的上顶点,点
在椭圆
上,直线
与
轴的交点为
,
为坐标原点,且
,
.
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的直线分别与椭圆
交于
,
两点(异于点
),证明:直线
过定点,并求该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题