刷题首页
题库
高中数学
题干
如图,椭圆
的左、右焦点分别为
,
轴,直线
交
轴于
点,
,
为椭圆
上的动点,
的面积的最大值为1.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作两条直线与椭圆
分别交于
,且使
轴,如图,问四边形
的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-24 10:43:09
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
同类题2
设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.
同类题3
已知椭圆
:
的短轴长为
,离心率为
,圆
的圆心
在椭圆
上,半径为2,直线
与直线
为圆
的两条切线.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)试问:
是否为定值?若是,求出该定值;若不是,说明理由.
同类题4
在直角坐标系
中,椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若斜率存在,纵截距为
的直线
与椭圆
相交于
两点,若直线
的斜率均存在,求证:直线
的斜率依次成等差数列.
同类题5
椭圆中心为坐标原点O,对称轴为坐标轴,且过M(2,
) ,N(
,1)两点,
(I)求椭圆的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且
?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题