刷题首页
题库
高中数学
题干
如图所示,
、
分别为椭圆
的左、右焦点,
为两个顶点,已知椭圆
上的点
到
、
两点的距离之和为4.
(Ⅰ)求椭圆
的方程和焦点坐标;
(Ⅱ)过椭圆
的焦点
作
的平行线交椭圆于
、
两点,求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-21 07:27:07
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
中,椭圆
:
上的动点到一个焦点的最远距离与最近距离分别是
与
,
的左顶点为
与
轴平行的直线与椭圆
交于
、
两点,过
、
两点且分别与直线
、
垂直的直线相交于点
.
(1)求椭圆
的标准方程;
(2)证明点
在一条定直线上运动,并求出该直线的方程;
(3)求
面积的最大值.
同类题2
已知
是椭圆
上的两点.
(1)求椭圆
的离心率;
(2)已知直线
过点
,且与椭圆
交于另一点
(不同于点
),若以
为直径的圆经过点
,求直线
的方程.
同类题3
已知椭圆
的离心率为
,点
椭圆的右顶点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆交于
两点,直线
与直线
的斜率和为
,求直线
的方程.
同类题4
已知椭圆
的焦点和上顶点分别为
我们称
为椭圆
C
的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知椭圆
的一个焦点为
且椭圆上的任意一点到两焦点的距离之和为4.
(1)若椭圆
与椭圆
相似,且相似比为2,求椭圆
的方程;
(2)如图,直线
与两个“相似椭圆”
和
分别交于点
A
、
B
和点
C
、
D
,证明:
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积