刷题首页
题库
高中数学
题干
已知椭圆
过点
,其离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的右顶点为
,直线
交
于两点
(异于点
),若
在
上,且
,
,证明直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2016-08-31 02:43:01
答案(点此获取答案解析)
同类题1
椭圆
:
的离心率为
,右顶点为
,下顶点为
,且
.
(1)求椭圆
的方程;
(2)若椭圆
与直线
相交于
,
两点,直线
,
分别与
轴交于
,
两点.试探究
,
两点的横坐标的乘积是否为定值,说明理由.
同类题2
已知椭圆
:
两个焦点之间的距离为2,且其离心率为
.
(Ⅰ) 求椭圆
的标准方程;
(Ⅱ) 若
为椭圆
的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足
,求
外接圆的方程.
同类题3
已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)设直
交椭圆
于
两点,判断点
与以线段
为直径的圆的位置关系,并说明理由.
同类题4
已知椭圆
的离心率
,则
的值等于__________.
同类题5
若中心在坐标原点,对称轴为坐标轴的椭圆经过点
,离心率为
,则椭圆的标准方程为_____.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题