刷题首页
题库
高中数学
题干
已知椭圆
过点
,且离心率为
.
(1)求
的方程;
(2)已知直线
不经过点
,且斜率为
,若
与
交于两个不同点
,且直线
的倾斜角分别为
,试判断
是否为定值,若是,求出该定值;否则,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 10:09:40
答案(点此获取答案解析)
同类题1
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)设椭圆短轴的一个端点为
,长轴的一个端点为
,点
是“准圆”上一动点,求三角形
面积的最大值.
同类题2
已知椭圆
的两个焦点
,且椭圆过点
,且
是椭圆上位于第一象限的点,且
的面积
.
(1)求点
的坐标;
(2)过点
的直线
与椭圆
相交与点
,直线
与
轴相交与
两点,点
,则
是否为定值,如果是定值,求出这个定值,如果不是请说明理由.
同类题3
已知椭圆
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线
l
:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.
同类题4
焦点在
x
轴上,长、短半轴长之和为10,焦距为
,则椭圆的标准方程为()
A.
B.
C.
D.
同类题5
已知椭圆
的左、右焦点分别为F
1
、F
2
,短轴端点分别为A、B,且四边形F
1
AF
2
B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足
,连结CM交椭圆于P,证明
为定值(O为坐标原点);
K^S*5U.C#O%
(III)在(II)的条件下,试问在
x
轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题