刷题首页
题库
高中数学
题干
(题文)已知椭圆
的方程为
,左、右焦点分别为
,焦距为4,点
是椭圆
上一点,满足
,且
.
(1)求椭圆
的方程;
(2)过点
分别作直线
交椭圆
于
两点,设直线
的斜率分别为
,且
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2016-08-08 05:20:19
答案(点此获取答案解析)
同类题1
已知椭圆
M
:
=1(
a
>
b
>
c
)的一个顶点坐标为(0,1),焦距为2
.若直线
y
=
x
+
m
与椭圆
M
有两个不同的交点
A
,
B
(
I
)求椭圆
M
的方程;
(
II
)将
表示为
m
的函数,并求△
OAB
面积的最大值(
O
为坐标原点)
同类题2
顺次连接椭圆
的四个项点,怡好构成了一个边长为
且面积为
的菱形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,过椭圆
C
右焦点
F
的直线
交椭圆
C
于
A
、
B
两点,若对满足条件的任意直线
,不等式
恒成立,求
的最小值.
同类题3
已知椭圆
:
右焦点为
,右顶点为
,点
在椭圆上,且
轴,直线
交
轴于点
,若
;
(1)求椭圆的离心率;
(2)设经过点
且斜率为
的直线
与椭圆在
轴上方的交点为
,圆
同时与
轴和直线
相切,圆心
在直线
上,且
. 求椭圆的方程.
同类题4
已知
分别是椭圆
的左、右焦点,动点
在
上,连结
并延长
至
点,使得
,设点
的轨迹为
.
(1)求
的方程;
(2)设
为坐标原点,点
,连结
交
于
点,若直线
的斜率与直线
的斜率存在且不为零,证明: 这两条直线的斜率之比为定值.
同类题5
在直角坐标系
中,椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若斜率存在,纵截距为
的直线
与椭圆
相交于
两点,若直线
的斜率均存在,求证:直线
的斜率依次成等差数列.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题