刷题首页
题库
高中数学
题干
已知动圆
恒过
且与直线
相切,动圆圆心
的轨迹记为
;直线
与
轴的交点为
,过点
且斜率为
的直线
与轨迹
有两个不同的公共点
,
,
为坐标原点.
(1)求动圆圆心
的轨迹
的方程,并求直线
的斜率
的取值范围;
(2)点
是轨迹
上异于
,
的任意一点,直线
,
分别与过
且垂直于
轴的直线交于
,
,证明:
为定值,并求出该定值;
(3)对于(2)给出一般结论:若点
,直线
,其它条件不变,求
的值(可以直接写出结果).
上一题
下一题
0.99难度 解答题 更新时间:2017-09-29 02:54:59
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的离心率是
,其左、右焦点分别为
,短轴顶点分别为
,如图所示,
的面积为1.
(1)求椭圆
的标准方程;
(2)过点
且斜率为
的直线
交椭圆
于
两点(异于
点),证明:直线
和
的斜率和为定值.
同类题2
已知椭圆
:
的右焦点
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)直线
过点
,且与椭圆
交于
,
两点,过原点
作直线
的垂线,垂足为
,如果△
的面积为
(
为实数),求
的值.
同类题3
已知椭圆
的左、右焦点分别为
,离心率为
,过点
的直线与椭圆
相交于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)若经过原点
的直线与椭圆
相交于
两点,且
,试判断
是否为定值?若为定值,试求出该定值;否则,请说明理由.
同类题4
设椭圆
的长轴两端点为
、
,异于
、
的点
在椭圆上,则
的斜率之积为_____________
同类题5
已知椭圆
,三角形
的三个顶点都在椭圆
上,设它的三边
中点分别为
,且三边所在直线的斜率分别为
(均不为0),
为坐标原点,若直线
的斜率之和为1,则
( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题