刷题首页
题库
高中数学
题干
已知动圆
恒过
且与直线
相切,动圆圆心
的轨迹记为
;直线
与
轴的交点为
,过点
且斜率为
的直线
与轨迹
有两个不同的公共点
,
,
为坐标原点.
(1)求动圆圆心
的轨迹
的方程,并求直线
的斜率
的取值范围;
(2)点
是轨迹
上异于
,
的任意一点,直线
,
分别与过
且垂直于
轴的直线交于
,
,证明:
为定值,并求出该定值;
(3)对于(2)给出一般结论:若点
,直线
,其它条件不变,求
的值(可以直接写出结果).
上一题
下一题
0.99难度 解答题 更新时间:2017-09-29 02:54:59
答案(点此获取答案解析)
同类题1
已知椭圆
的左顶点为
,右焦点为
,过点
的直线交椭圆于
,
两点.
(1)求该椭圆的离心率;
(2)求直线
和
分别与直线
交于点
,
,问:
轴上是否存在定点
使得
?乳品存在,求出点
的坐标;若不存在,说明理由.
同类题2
已知椭圆
的左右顶点分别为
,左右焦点为分别为
,焦距为
,离心率为
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)若
为椭圆上一动点,直线
过点
且与
轴垂直,
为直线
与
的交点,
为直线
与直线
的交点,求证:点
在一个定圆上.
同类题3
设椭圆
的左顶点为
,且椭圆
与直线
相切,
(1)求椭圆
的标准方程;
(2)过点
的动直线与椭圆
交于
两点,设
为坐标原点,是否存在常数
,使得
?请说明理由.
同类题4
已知椭圆
C
:
(
a
>
b
>0)的两个焦点分别为
F
1
,
F
2
,离心率为
,过
F
1
的直线
l
与椭圆
C
交于
M
,
N
两点,且△
MNF
2
的周长为8.
(1)求椭圆
C
的方程;
(2)若直线
y
=
kx
+
b
与椭圆
C
分别交于
A
,
B
两点,且
OA
⊥
OB
,试问点
O
到直线
AB
的距离是否为定值,证明你的结论.
同类题5
在平面直角坐标系
xOy
中,已知椭圆
C
:
的离心率为
,右准线方程为
.
求椭圆
C
的标准方程;
已知斜率存在且不为0的直线
l
与椭圆
C
交于
A
,
B
两点,且点
A
在第三象限内
为椭圆
C
的上顶点,记直线
MA
,
MB
的斜率分别为
,
.
若直线
l
经过原点,且
,求点
A
的坐标;
若直线
l
过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题