刷题首页
题库
高中数学
题干
设椭圆
的左顶点为
,且椭圆
与直线
相切,
(1)求椭圆
的标准方程;
(2)过点
的动直线与椭圆
交于
两点,设
为坐标原点,是否存在常数
,使得
?请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-06-17 12:27:47
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
xOy
中,已知椭圆
C
1
:
+
y
2
=1,椭圆
C
2
:
+
=1(
a
>
b
>0),
C
2
与
C
1
的长轴长之比为
∶1,离心率相同.
(1) 求椭圆
C
2
的标准方程;
(2) 设点
P
为椭圆
C
2
上的一点.
①射线
PO
与椭圆
C
1
依次交于点
A
,
B
,求证:
为定值;
②过点
P
作两条斜率分别为
k
1
,
k
2
的直线
l
1
,
l
2
,且直线
l
1
,
l
2
与椭圆
C
1
均有且只有一个公共点,求证
k
1
·
k
2
为定值.
同类题2
已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。
同类题3
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
同类题4
已知椭圆
的右焦点为
,点
为椭圆
上的动点,且
的最大值和最小值分别为
和
.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于两个不同点
,
,与
轴交于
.若
,且
(
为坐标原点),求
的取值范围.
同类题5
已知椭圆C:
的左,右焦点分别为
且椭圆
上的点
到
两点的距离之和为4
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点,
为坐标原点直线
的斜率之积等于
,试探求△OMN的面积是否为定值,并说明理由
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题