刷题首页
题库
高中数学
题干
已知椭圆
的左右顶点分别为
,左右焦点为分别为
,焦距为
,离心率为
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)若
为椭圆上一动点,直线
过点
且与
轴垂直,
为直线
与
的交点,
为直线
与直线
的交点,求证:点
在一个定圆上.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-30 11:38:59
答案(点此获取答案解析)
同类题1
已知椭圆
其左,右焦点分别为
,离心率为
点
又点
在线段
的中垂线上。
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,点
在直线
上(点
不在
轴上),直线
与椭圆
交于点
直线
与椭圆
交于
线段
的中点为
,证明:
。
同类题2
已知椭圆
的右焦点为
,离心率为
。
(1)求椭圆
的标准方程;
(2)
是椭圆
上不同的三点,若直线
的斜率之积为
,试问从
两点的横坐标之和是否为定值?若是,求出这个定值;若不是,请说明理由。
同类题3
设
分别为双曲线
的左、右顶点,
是双曲线上不同于
的一点,设直线
的斜率分别为
,则
取得最小值时,双曲线的离心率为( )
A.
B.
C.
D.
同类题4
如图所示,已知
、
、
是长轴长为
的椭圆
上的三点,点
是长轴的一个端点,
过椭圆中心
,且
,
.
(1)求椭圆
的方程;
(2)在椭圆
上是否存点
,使得
?若存在,有几个(不必求出
点的坐标),若不存在,请说明理由;
(3)过椭圆
上异于其顶点的任一点
,作圆
的两条线,切点分别为
、
,,若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.
同类题5
已知椭圆
的左焦点为
,离心率
,
是椭圆上的动点.
(1)求椭圆标准方程;
(2)设动点
P
满足:
直线
与
的斜率之积为
,问:是否存在定点
为定值?若存在,求出
的坐标,若不存在,说明理由.
(3)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长交椭圆于点
,证明:
.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题