刷题首页
题库
高中数学
题干
设点
是椭圆
(
)上一点,
F
1
,
F
2
分别是椭圆的左、右焦点,
I
为△
PF
1
F
2
的内心,若 S
△IPF1
+S
△IPF2
=2S
△IF1F2
,则该椭圆的离心率是
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2017-10-15 12:12:34
答案(点此获取答案解析)
同类题1
已知椭圆
:
经过点
,离心率为
.
(1)求椭圆的方程;
(2)过坐标原点作两条直线
,
,直线
交椭圆于
,
,直线
交椭圆于
,
,且
,直线
,
的斜率分别为
,
,求证:
为定值.
同类题2
已知椭圆
的离心率为
,焦点分别为
,点P是椭圆C上的点,
面积的最大值是2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线
与椭圆C交于M,N两点,点D是椭圆C上的点,O是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
同类题3
已知椭圆
:
的左、右焦点分别为
,
,点
也为抛物线
:
的焦点.
(1)若
,
为椭圆
上两点,且线段
的中点为
,求直线
的斜率;
(2)若过椭圆
的右焦点
作两条互相垂直的直线分别交椭圆于
,
和
,
,设线段
,
的长分别为
,
,证明
是定值.
同类题4
已知双曲线
具有性质:若
、
是双曲线左、右顶点,
为双曲线上一点,且
在第一象限.记直线
,
的斜率分别为
,
,那么
与
之积是与点
位置无关的定值.
(1)试对椭圆
,类比写出类似的性质(不改变原有命题的字母次序),并加以证明.
(2)若椭圆
的左焦点
,右准线为
,在(1)的条件下,当
取得最小值时,求
的垂心
到
轴的距离.
同类题5
已知椭圆
:
经过点
,离心率为
.
(1)求椭圆
的标准方程;
(2)过坐标原点
作直线
交椭圆
于
、
两点,过点
作
的平行线交椭圆
于
、
两点.是否存在常数
, 满足
?若存在,求出这个常数;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题