刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,且椭圆
过点
,直线
过椭圆
的右焦点
且与椭圆
交于
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知点
,求证:若圆
与直线
相切,则圆
与直线
也相切.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-22 06:59:04
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点
椭圆的右顶点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆交于
两点,直线
与直线
的斜率和为
,求直线
的方程.
同类题2
已知A、B分别是椭圆
的左、右顶点,P为椭圆C的下顶点,F为其右焦点
点M是椭圆C上异于A、B的任一动点,过点A作直线
轴
以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点
点G的坐标为
,且
,椭圆C的离心率为
.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.
同类题3
已知椭圆
的离心率为
,长轴长为
.
(1)求椭圆
的方程;
(2)点
是以长轴为直径的圆
上一点,圆
在点
处的切线交直线
于点
,求证:过点
且垂直于直线
的直线
过椭圆
的右焦点.
同类题4
如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且
=
, 那么椭圆的方程是
.
同类题5
如图所示,在直角梯形ABCD中,
,曲线段.DE上任一点到A、B两点的距离之和都相等.
(Ⅰ) 建立适当的直角坐标系,求曲线段DE的方程;
(Ⅱ) 过C能否作-条直线与曲线段DE 相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题