刷题首页
题库
高中数学
题干
已知椭圆T的焦点分别为F
1
(﹣1,0)、F
2
(1,0),且经过点P(
,
).
(1)求椭圆T的标准方程;
(2)设椭圆T的左右顶点分别为A、B,过左焦点的直线与椭圆交于点C、D,△ABD和△ABC的面积分别为
S
1
、
S
2
,求
的最大值;
(3)设点M在椭圆T外,直线ME、MF与椭圆T分别相切于点E、F,若ME⊥MF,求证:点M在定圆上.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-07 07:39:17
答案(点此获取答案解析)
同类题1
设三个数
,2,
成等差数列,其中
对应点的曲线方程是
.
(1)求
的标准方程;
(2)直线
与曲线
C
相交于不同两点
,且满足
为钝角,其中
为直角坐标原点,求出
的取值范围.
同类题2
已知椭圆
的焦距为
,椭圆
上任意一点到椭圆两个焦点的距离之和为6.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,点
,且
,求直线
的方程.
同类题3
已知点
和动点
,以线段
为直径的圆内切于圆
.
(1)求动点
的轨迹方程;
(2)已知点
,
,经过点
的直线
与动点
的轨迹交于
,
两点,求证:直线
与直线
的斜率之和为定值.
同类题4
已知
是圆
:
上任意一点,
,线段
的垂直平分线与半径
交于点
,当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)记曲线
与
轴交于
两点,
是直线
上任意一点,直线
,
与曲线
的另一个交点分别为
,求证:直线
过定点
.
同类题5
已知圆
:
与定点
,
为圆
上的动点,点
在线段
上,且满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设曲线
与
轴正半轴交点为
,不经过点
的直线
与曲线
相交于不同两点
,
,若
.证明:直线
过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
椭圆中的直线过定点问题