刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,其左、右焦点为F
1
、F
2
,点P是坐标平面内一点,且
其中O为坐标原点.
(I) 求椭圆C的方程;
(II)如图,过点S(0,
},且斜率为k的动直线
l
交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2013-05-29 03:19:24
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
其右顶点为
,下顶点为
,定点
,
的面积为
过点
作与
轴不重合的直线
交椭圆
于
两点,直线
分别与
轴交于
两点.
(1)求椭圆
的方程;
(2)试探究
的横坐标的乘积是否为定值,说明理由.
同类题2
已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
C
的标准方程.
(2)设直线
l
过点(2,0)且与椭圆
C
相交于不同的两点
A
、
B
,直线
与
x
轴交于点
D
,
E
是直线
上异于
D
的任意一点,当
时,直线
BE
是否恒过
x
轴上的定点?若过,求出定点坐标,若不过,请说明理由.
同类题3
已知椭圆
的中心在原点,一个焦点为
,且
经过点
.
(1)求
的方程;
(2)设
与
轴的正半轴交于点
,直线
:
与
交于
、
两点(
不经过
点),且
.证明:直线
经过定点,并求出该定点的坐标.
同类题4
设点
,
分别是椭园C:
的左、右焦点,且椭圆C上的点到
的距离的最小值为
,点M,N是椭圆C上位于x轴上方的两点,且向量
与向量
平行.
求椭圆C的方程;
当
时,求
的面积;
当
时,求直线
的方程.
同类题5
如图,已知抛物线
的焦点为
,椭圆
的中心在原点,
为其右焦点,点
为曲线
和
在第一象限的交点,且
.
(1)求椭圆
的标准方程;
(2)设
为抛物线
上的两个动点,且使得线段
的中点
在直线
上,
为定点,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题