刷题首页
题库
高中数学
题干
已知点
在椭圆
:
上,椭圆
的焦距为2.
(1)求椭圆
的方程;
(2)斜率为定值
k
的直线
与椭圆
交于
A
、
B
两点,且满足
的值为常数,(其中
O
为坐标原点)
(i)求
k
的值以及这个常数;
(ii)写出一般性结论(不用证明):斜率为定值
k
的直线
与椭圆
交于
A
、
B
两点,且满足
的值为常数,则
k
的值以及这个常数是多少?
上一题
下一题
0.99难度 解答题 更新时间:2019-03-31 08:39:19
答案(点此获取答案解析)
同类题1
已知椭圆E:
的焦距为2
,一条准线方程为x=
,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.
(1)求椭圆E的标准方程;
(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;
(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.
同类题2
已知椭圆
的中心在原点,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,离心率等于
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
作直线
交椭圆
于
两点,交
轴于
点,若
,求证
为定值.
同类题3
已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,
交椭圆于
两个不同点.
(1)求椭圆的标准方程以及
的取值范围;
(2)求证直线
与
轴始终围成一个等腰三角形.
同类题4
椭圆
(
)的左、右焦点分别为
,
在椭圆上,
的周长为
,面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,连接
,
并延长交椭圆
于
,连接
,探索
与
的斜率之比是否为定值并说明理由.
同类题5
已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题