刷题首页
题库
高中数学
题干
已知椭圆
,离心率
.左焦点为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(1)求该椭圆的方程;
(2)过椭圆的左焦点的任意一条直线
与椭圆交于
两点,在
轴上是否存在定点
使得
轴平分
,若存在,求出定点坐标,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-16 01:08:57
答案(点此获取答案解析)
同类题1
已知椭圆
的上顶点为
,离心率为
. 抛物线
截
轴所得的线段长为
的长半轴长.
(1)求椭圆
的方程;
(2)过原点的直线
与
相交于
两点,直线
分别与
相交于
两点
证明:以
为直径的圆经过点
;
记
和
的面积分别是
,求
的最小值.
同类题2
已知椭圆
:
经过点
且离心率为
.
(1)求椭圆方程;
(2)是否存在直线
,使椭圆
上存在不同两点
关于该直线对称?若存在,求
的取值范围;若不存在,请说明理由.
同类题3
已知椭圆
:
,短轴长为
,离心率为
,直线
与椭圆
交于不同的两点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
,且
的面积为
,求
的值.
同类题4
已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.
同类题5
设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题