刷题首页
题库
高中数学
题干
已知椭圆
,离心率
.左焦点为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(1)求该椭圆的方程;
(2)过椭圆的左焦点的任意一条直线
与椭圆交于
两点,在
轴上是否存在定点
使得
轴平分
,若存在,求出定点坐标,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-16 01:08:57
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
同类题2
若焦点在
轴上的椭圆
的离心率为
,则
.
同类题3
已知椭圆
的左顶点为
,离心率为
,过点
且斜率为
的直线
与椭圆交于点
与
轴交于点
.
(1)求椭圆的方程;
(2)设点
为
的中点.
(i)若
轴上存在点
,对于任意的
,都有
(
为原点),求出点
的坐标;
(ii)射线
(
为原点)与椭圆
交于点
,满足
,求正数
的值.
同类题4
在平面直角坐标系
xOy
中,已知椭圆
C
:
的离心率为
,右准线方程为
.
求椭圆
C
的标准方程;
已知斜率存在且不为0的直线
l
与椭圆
C
交于
A
,
B
两点,且点
A
在第三象限内
为椭圆
C
的上顶点,记直线
MA
,
MB
的斜率分别为
,
.
若直线
l
经过原点,且
,求点
A
的坐标;
若直线
l
过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.
同类题5
已知椭圆
经过点
离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点
的直线(不经过点
且不与
轴重合)与椭圆交于
两点,与直线
:
交于点
,记直线
的斜率分别为
.则是否存在常数
,使得向量
共线?若存在求出
的值;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题