刷题首页
题库
高中数学
题干
设
分别为椭圆
的左、右焦点,点
为椭圆
的左顶点,点
为椭圆
的上顶点,且
.
(1)若椭圆
的离心率为
,求椭圆
的方程;
(2)设
为椭圆
上一点,且在第一象限内,直线
与
轴相交于点
,若以
为直径的圆经过点
,证明:点
在直线
上.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-15 09:12:57
答案(点此获取答案解析)
同类题1
已知椭圆
,离心率
,点
在椭圆上.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上一点,左顶点为
,上顶点为
,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
同类题2
已知椭圆
,
为椭圆的左右焦点,过右焦点垂直于
轴的直线交椭圆于
两点,若
,且椭圆离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆上两个不同点,
为
中点,
关于原点和
轴的对称点分别是
,直线
在
轴的截距为
,直线
在
轴的截距为
,试证明:
为定值.
同类题3
已知椭圆
的离心率
,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为
,则
.
同类题4
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题