刷题首页
题库
高中数学
题干
已知椭圆
的焦点与双曲线
的焦点重合,并且经过点
.
(Ⅰ)求椭圆C的标准方程;
(II) 设椭圆C短轴的上顶点为P,直线
不经过P点且与
相交于
、
两点,若直线PA与直线PB的斜率的和为
,判断直线
是否过定点,若是,求出这个定点,否则说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-04 05:12:48
答案(点此获取答案解析)
同类题1
已知平面上的动点
P
(
x
,
y
)及两定点
A
(-2,0),
B
(2,0),直线
PA
,
PB
的斜率分别是
k
1
,
k
2
,且
k
1
·
k
2
=-
.
(1)求动点
P
的轨迹
C
的方程;
(2)已知直线
l
:
y
=
kx
+
m
与曲线
C
交于
M
,
N
两点,且直线
BM
、
BN
的斜率都存在,并满足
k
BM
·
k
BN
=-
,求证:直线
l
过原点.
同类题2
已知椭圆
的离心率为
,左顶点为
,过椭圆
的右焦点
作互相垂直的两条直线
分别交直线
于
两点,
交椭圆
于另一点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求证:直线
恒过定点,并求出定点坐标.
同类题3
已知椭圆
的焦距为2,过点
.
(1)求椭圆
的标准方程;
(2)设椭圆的右焦点为
F
,定点
,过点
F
且斜率不为零的直线
l
与椭圆交于
A
,
B
两点,以线段
AP
为直径的圆与直线
的另一个交点为
Q
,证明:直线
BQ
恒过一定点,并求出该定点的坐标.
同类题4
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题5
如图,点
F
为椭圆
C
:
(
a
>
b
>0)的左焦点,点
A
,
B
分别为椭圆
C
的右顶点和上顶点,点
P
(
,
)在椭圆
C
上,且满足
OP
∥
AB
.
(1)求椭圆
C
的方程;
(2)若过点
F
的直线
l
交椭圆
C
于
D
,
E
两点(点
D
位于
x
轴上方),直线
AD
和
AE
的斜率分别为
和
,且满足
﹣
=﹣2,求直线
l
的方程.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题