刷题首页
题库
高中数学
题干
如图,已知椭圆
C
:
1(
a
>
b
>0)的离心率为
,短轴长为2,直线
l
与圆
O
:
x
2
+
y
2
相切,且与椭圆
C
相交于
M
、
N
两点.
(1)求椭圆
C
的方程;
(2)证明:
•
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-26 04:43:12
答案(点此获取答案解析)
同类题1
求适合下列条件的椭圆标准方程:
(1)经过点
,
;
(2)长轴长等于20,焦距等于12.
同类题2
已知椭圆
:
的短轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
的左、右焦点分别为
、
,左、右顶点分别为
、
,点
、
为椭圆
上位于
轴上方的两点,且
,记直线
、
的斜率分别为
、
,若
,求直线
的方程.
同类题3
已知椭圆
:
(
)的离心率为
,以椭圆的四个顶点为顶点的四边形的面积为8.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,斜率为
的直线
与椭圆
交于
,
两点,点
在直线
的左上方.若
,且直线
,
分别与
轴交于
,
点,求线段
的长度.
同类题4
已知椭圆
的左焦点
,上顶点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同两点
,且线段
的中点
在圆
上,求
的值.
同类题5
已知
是椭圆
(
)上一点,
,
是椭圆上的两焦点,且满足
.
(I)求椭圆方程;
(Ⅱ)设
是椭圆上任两点,且直线
,
的斜率分别为
,若存在常数
使
,求直线
的斜率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题