刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,原点到椭圆的上顶点与右顶点连线的距离为
.
(1)求椭圆
的标准方程;
(2)斜率存在且不为零的直线
与椭圆相交于
,
两点,若线段
的垂直平分线的纵截距为-1,求直线
纵截距的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-31 10:50:54
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长为
,左焦点的坐标为
;
(1)求
的标准方程;
(2)设与
轴不垂直的直线
过
的右焦点,并与
交于
、
两点,且
,试求直线
的倾斜角.
同类题2
已知椭圆
的短半轴长为
,离心率为
.
(1)求椭圆的方程;
(2)设
是坐标原点,点
在直线
上,点
在椭圆上,且
,求线段
长度的最小值.
同类题3
已知椭圆
的离心率
,一个长轴顶点在直线
上,若直线
与椭圆交于
,
两点,
为坐标原点,直线
的斜率为
,直线
的斜率为
.
(1)求该椭圆的方程.
(2)若
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
同类题4
已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.
同类题5
(1)求焦点在
轴上,长轴长为6,焦距为4的椭圆标准方程;
(2)求一个焦点为
,渐近线方程为
的双曲线标准方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆的中点弦