刷题首页
题库
高中数学
题干
抛物线
:
的焦点为
,抛物线过点
.
(Ⅰ)求抛物线
的标准方程与其准线
的方程;
(Ⅱ)过
点作直线与抛物线
交于
,
两点,过
,
分别作抛物线的切线,证明两条切线的交点在抛物线
的准线
上.
上一题
下一题
0.99难度 解答题 更新时间:2019-07-25 12:17:59
答案(点此获取答案解析)
同类题1
已知抛物线
的焦点为
,过
的直线交抛物线于
,
两点
(1)若以
,
为直径的圆的方程为
,求抛物线
的标准方程;
(2)过
,
分别作抛物线的切线
,
,证明:
,
的交点在定直线上.
同类题2
在平面直角坐标系
中,已知抛物线
上一点
到其焦点
的距离为
.
(1)求抛物线的方程与准线方程;
(2)直线
与抛物线相交于
两点(
位于
轴的两侧),若
,求证直线
恒过定点.
同类题3
已知双曲线
:
,当双曲线
的焦距取得最小值时,其右焦点恰为抛物线
:
的焦点、若
、
是抛物线
上两点,
,则
中点的横坐标为( )
A.
B.2
C.
D.3
同类题4
设抛物线
的焦点为
,过点
作垂直于
轴的直线与抛物线交于
,
两点,且以线段
为直径的圆过点
.
(1)求抛物线
的方程;
(2)若直线
与抛物线
交于
,
两点,点
为曲线
:
上的动点,求
面积的最小值.
同类题5
在平面直角坐标系
中,抛物线
的焦点为
,准线为
,过点
倾斜角为
的直线
与抛物线交于不同的两点
(其中点
在第一象限),过点
作
,垂足为
且
,则抛物线的方程是____________________________.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
求抛物线的切线方程