刷题首页
题库
高中数学
题干
已知抛物线
:
的焦点为
,点
在抛物线
上,且
.
(1)求抛物线
的方程;
(2)过点
作互相垂直的两条直线,与抛物线分别相交于点
,
、
分别为弦
、
的中点,求
面积的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 10:09:34
答案(点此获取答案解析)
同类题1
已知抛物线
:
的焦点为
,点
为抛物线
上一点,且点
到焦点
的距离为4,过
作抛物线
的切线
(斜率不为0),切点为
.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)求证:以
为直径的圆过点
.
同类题2
如图抛物线
的焦点为
,
为抛物线上一点(
在
轴上方),
,
点到
轴的距离为4.
(1)求抛物线方程及点
的坐标;
(2)是否存在
轴上的一个点
,过点
有两条直线
,满足
,
交抛物线
于
两点.
与抛物线相切于点
(
不为坐标原点),有
成立,若存在,求出点
的坐标.若不存在,请说明理由.
同类题3
在平面直角坐标系中,已知点
,直线
,动直线
垂直于
于点
,线段
的垂直平分线交
于点
,设
的轨迹为
.
(1)求曲线
的方程;
(2)以曲线
上的点
为切点作曲线
的切线
,设
分别与
轴交于
两点,且
恰与以定点
为圆心的圆相切. 当圆
的面积最小时,求
与
面积的比.
同类题4
已知曲线
上的动点
满足到点
的距离比到直线
的距离小
.
(1)求曲线
的方程;
(2)动点
在直线
上,过点
分别作曲线
的切线
、
,切点为
、
.
(ⅰ)求证:直线
恒过一定点,并求出该定点的坐标;
(ⅱ)在直线
上是否存在一点
,使得
为等边三角形(
点也在直线
上)?若存在,求出点
坐标,若不存在,请说明理由
同类题5
设抛物线
的焦点为
,过点
作垂直于
轴的直线与抛物线交于
,
两点,且以线段
为直径的圆过点
.
(1)求抛物线
的方程;
(2)若直线
与抛物线
交于
,
两点,点
为曲线
:
上的动点,求
面积的最小值.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
直线与抛物线的位置关系