刷题首页
题库
初中数学
题干
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
上一题
下一题
0.99难度 解答题 更新时间:2013-12-27 10:14:10
答案(点此获取答案解析)
同类题1
点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得到线段PE,连接BE,则∠CBE等于
.
同类题2
如图,P是正方形ABCD外一点,PA=
,PB=4,则当线段PD取最长时,∠APB=_____.
同类题3
如图所示,在正方形ABCD中,M是BC的中点,CN平分
.
(1)求证:
.
(2)在第(1)题中,如果M不是BC边的中点,而是上面任意一点,那么结论
是否仍成立?请证明你的结论.
同类题4
如图,在
中,
,
.
(1)如图1,若直线
与
相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
于
,证明:
.
(2)如图2,若直线
与
的延长线相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
交
的延长线于
,探究:
、
、
之间的数量关系,并证明.
同类题5
正方形ABCD的边长为12,在其角上去掉两个全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH顶点分别在正方形ABCD的边上,且EH过N点,则正方形EFGH的边长是()
A.10
B.3
C.4
D.3
或4
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明