刷题首页
题库
初中数学
题干
问题探究
请在图
中作出两条直线,使它们将圆面积四等分,并写出作图过程;
拓展应用
如图
,
是正方形
内一定点,
是对角线
、
的交点.连接
并延长,分别交
、
于
、
.过
做直线
,分别交
、
于
、
.求证:
、
将正方形
的面积四等分.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-07 11:39:00
答案(点此获取答案解析)
同类题1
已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
同类题2
已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.
同类题3
正方形
ABCD
中,点
E
是
BD
上一点,过点
E
作
EF
⊥
AE
交射线
CB
于点
F
,连结
CE
.
(1)已知点
F
在线段
BC
上.
①若
AB
=
BE
,求∠
DAE
度数;
②求证:
CE
=
EF
;
(2)已知正方形边长为2,且
BC
=2
BF
,请直接写出线段
DE
的长.
同类题4
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、E
A.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
同类题5
已知:如图,正方形ABCD,E,F分别为DC,BC中点.求证:AE=AF.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的性质
根据正方形的性质证明
根据正方形的性质与判定求线段长