刷题首页
题库
初中数学
题干
在矩形ABCD中,点E是BC边上一点,连接AE.点F是CB延长线上一点,点G是矩形ABCD外一点,连接GC,GE,GB,GF.GF⊥GC,GE平分∠BGC,∠GEF=45°.
(1)如图1,当∠EGC=15°,BG=2时,求△CGF的面积;
(2)如图2,当矩形ABCD是正方形,FB=CE时,求证:AE=
FG.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-29 01:10:02
答案(点此获取答案解析)
同类题1
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
同类题2
问题提出:
(1)如图①,若正方形
的边长为6,点
分别为边
上的点,且
,
与
交于点
,连接
,则
;
问题探究:
(2)如图②,
,
是等腰直角三角形,顶点
分别在
的两边上,试说明点
在
的平分线上;
问题解决:
(3)如图③,
,
是等边三角形,顶点
分别在
的两边上,点
在
上,且
,连接
,求
的最小值.
同类题3
如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于
A.
求证:PM=QM.
同类题4
如图,
是
的中线,过点
、
分别作
、
的平行线,两平行线相交于点
.
(1)求证:
;
(2)当
、
满足什么条件时,
①四边形
是矩形?请说明理由;
②四边形
是菱形?请直接写出结论,不必说明理由;
③四边形
是正方形?请直接写出结论,不必说明理由.
同类题5
我们知道:在小学已经学过“正方形的四条边都相等,正方形的四个内角都是直角”,试利用上述知识,并结合已学过的知识解答下列问题:
如图1,在正方形
ABCD
中,
G
是射线
DB
上的一个动点(点
G
不与点
D
重合),以
CG
为边向下作正方形
CGEF
.
(1)当点
G
在线段
BD
上时,求证:
;
(2)连接
BF
,试探索:
BF
,
BG
与
AB
的数量关系,并说明理由;
(3)若
AB=a
(
a
是常数),如图2,过点
F
作
FT
∥
BC
,交射线
DB
于点
T
,问在点
G
的运动过程中,
GT
的长度是否会随着
G
点的移动而变化?若不变,请求出
GT
的长度;若变化,请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明