刷题首页
题库
初中数学
题干
如图,正方形ABCD中,AB=
,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,C
A.
(1)求证:AE=CF;
(2)若A,E,O三点共线,连接OF,求线段OF的长.
(3)求线段OF长的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-31 05:09:47
答案(点此获取答案解析)
同类题1
如图,在直角坐标系中,A的坐标为(a,0),D的坐标为(0,b),且a、b满足
+(b-4)
2
=0
(1)求A、D两点的坐标;
(2)以A为直角顶点作等腰直角三角形△ADB,直接写出B的坐标;
(3)在(2)的条件下,当点B在第四象限时,将△ADB沿直线BD翻折得到△A′DB,点P为线段BD上一动点(不与B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,请探究:PD、PN、BN之间的数量关系.
同类题2
如图,在正方形ABCD中,动点P在射线CB上(与B、C不重合),连结AP,过D作DF∥AP交直线BC于点F,过F作FE⊥直线BD于点E,连结AE、P
A.
(1)如图,当点P在线段CB上时
①求证:△ABP≌△DCF;
②点P在运动过程中,探究:△AEP的形状是否发生变化,若不变,请判断△AEP的形状,并说明理由;
(2)如图,当点P在CB的延长线上时,若正方形ABCD的边长为1,设BP=x,当x为何值时,DF平分∠BDC?
同类题3
己知:如图,△ABC中,点O是AC上(端点除外)的一动点,过点O作直线,MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F,连接A
A.A
B.
(1)求证:∠ECF=90°;
(2)当点O运动到何处时,四边形AECF是矩形?请说明理由:
(3)在(2)的条件下,△ABC应该满足条件:__________,就能使矩形AECF变为正方形, (直接添加条件,无需证明)
同类题4
如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是( )
A.22.5°
B.30°
C.45°
D.67.5°
同类题5
小明与同学们在数学动手实践操作活动中,将锐角为
的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,
的两边分别与正方形的边BC、DC或其延长线相交于点E、F,连结E
A.
(探究发现)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC相交时,如图
所示,请直接写出线段BE、DF、EF满足的数量关系:______.
(拓展思考)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC的延长线相交时,如图
所示,则线段BE、DF、EF又将满足怎样的数量关系:______,并证明你的结论;
(创新应用)
若正方形的边长为4,在三角板旋转过程中,当
的一边恰好经过BC边的中点时,试求线段EF的长.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明