刷题首页
题库
初中数学
题干
如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD于点
A.
(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-22 02:09:03
答案(点此获取答案解析)
同类题1
如图,正方形ABCD和正方形CEFG的边长分别为a和b,BE和DG相交于点H,连接HC,给出下列结论:①BE=DG;②BE⊥DG;③DE
2
+BG
2
=2a
2
+2b
2
,其中正确的结论是__________.
同类题2
如图,正方形
ABCD
和正方形
CEFG
的边长分别为
a
和
b
,正方形
CEFG
绕点
C
旋转,
(1)猜想
BE
与
DG
的关系,并证明你的结论;
(2)用含
a
、
b
的式子表示
DE
2
+
BG
2
.
同类题3
已知四边形
ABCD
是正方形,点
E
是边
BC
上的任意一点,
AE
⊥
EF
,且直线
EF
交正方形外角的平分线
CF
于点
F
.
(1)如图1,求证:
AE
=
EF
;
(2)如图2,当
AB
=2,点
E
是边
BC
的中点时,请直接写出
FC
的长.
同类题4
小明与同学们在数学动手实践操作活动中,将锐角为
的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,
的两边分别与正方形的边BC、DC或其延长线相交于点E、F,连结E
A.
(探究发现)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC相交时,如图
所示,请直接写出线段BE、DF、EF满足的数量关系:______.
(拓展思考)
在三角板旋转过程中,当
的两边分别与正方形的边CB、DC的延长线相交时,如图
所示,则线段BE、DF、EF又将满足怎样的数量关系:______,并证明你的结论;
(创新应用)
若正方形的边长为4,在三角板旋转过程中,当
的一边恰好经过BC边的中点时,试求线段EF的长.
同类题5
如图,正方形
,点
在边
上,且
,
,垂足为
,且交
于点
,
与
交于点
,延长
至
,使
,连接
.有如下结论:①
;②
;③
;④
.上述结论中,所有正确结论的序号是( )
A.①②
B.①③
C.①②③
D.②③④
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明