刷题首页
题库
初中数学
题干
已知:正方形
中,
,
绕点
顺时针旋转,它的两边分别交
(或它们的延长线)于点
.
当
绕点
旋转到
时(如图1),易证
.
(1)当
绕点
旋转到
时(如图2),线段
和
之间有怎样的数量关系?写出猜想,并加以证明.
(2)当
绕点
旋转到如图3的位置时,线段
和
之间又有怎样的数量关系?请直接写出你的猜想.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-06 11:08:20
答案(点此获取答案解析)
同类题1
猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为
.
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论
仍然成立.
同类题2
如图1,将矩形纸片ABCD沿AC剪开,得到△ABC和△AC
A.
(1)将图1中的△ABC绕点A顺时针旋转∠α,使∠α=∠BAC,得到图2所示的△ABC′,过点C′作C′E∥AC,交DC的延长线于点E,试判断四边形ACEC′的形状,并说明理由.
(2)若将图1中的△ABC绕点A顺时针旋转,使B,A,D在同一条直线上,得到图3所示的△ABC′,连接CC′,过点A作AF⊥CC′于点F,延长AF至点G,使FG=AF,连接CG,C′G,试判断四边形ACGC′的形状,并说明理由.
同类题3
如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P,若AE=AP=1,PB=
,下列结论:① △APD≌△AEB;② EB⊥ED;③ 点B到直线AE的距离为
; ④
,其中正确结论的序号是( )
A.①②③
B.①②④
C.①③④
D.②③④
同类题4
如图,
E
,
F
是正方形
ABCD
的对角线
AC
上的两点,
AC
=8,
AE
=
CF
=2,则四边形
BEDF
的周长是_________.
同类题5
问题提出:
(1)如图①,若正方形
的边长为6,点
分别为边
上的点,且
,
与
交于点
,连接
,则
;
问题探究:
(2)如图②,
,
是等腰直角三角形,顶点
分别在
的两边上,试说明点
在
的平分线上;
问题解决:
(3)如图③,
,
是等边三角形,顶点
分别在
的两边上,点
在
上,且
,连接
,求
的最小值.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明